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Abstract� We present results from the application of two conformational search methods�
genetic algorithms �GA� and parallel direct search methods for �nding all of the low energy confor�
mations of a molecule that are within a certain energy of the global minimum� Genetic algorithms
are in a class of biologically motivated optimization methods that evolve a population of individ�
uals where individuals who are more ��t� have a higher probability of surviving into subsequent
generations� The parallel direct search method �PDS� is a type of pattern search method that uses
an adaptive grid to search for minima� In addition� we present a technique for performing energy
minimization based on using a constrained optimization method�

Key Words� global optimization� constrained optimization� nonlinear programming� molecular
conformation�

�� Introduction� An important goal of computational chemistry research is the
design of molecules for speci�c applications� Examples of these types of applications
occur in the development of enzymes for the removal of toxic wastes� the development
of new catalysts for material processing� biosensor design and the design of new anti�
cancer agents� Factors that must be taken into account include shape� size� electronic
properties� and reactivity� For many physical and biological properties� the molecular
conformation largely determines the �nal function� and this is the rationale for the
development of a large number of conformation search methods�

The general approach is to search the conformation space of a molecule in order to
�nd all energy minima within a prescribed energy range� The problem can be broken
into two major parts� de�ning the energy function and �nding e�cient methods for
performing the conformational search� In general� one can decompose the search into
two phases� In the �rst phase� we are interested in performing a coarse but broad
search� This stage generates a number of interesting conformations that can be used
as starting guesses for the second phase� which is local energy minimization� The
global search phase is conceptually the harder of the two because the size of the
parameter space is so large� Additionally� local information about the surface rarely
provides de�nitive clues regarding the location of the global minimum� Because it
is di�cult to exhaustively search the conformation space of any but the smallest
molecules� a number of statistical heuristic methods have been developed ���� 	
��
These include pure random search� simulated annealing �	��� Cartesian coordinate
directed tweak �	��� taboo search ����� parallel stochastic methods as in �
� ��� genetic
algorithms ��
� �	� �
� and direct search methods ���� 
�� 

� 	��� Non�stochastic
methods have been developed� including Scheraga�s di�usion method ���� and a class
of branch�and�bound methods due to Floudas �
��� A discussion of many of the
methods used for molecular conformation and protein folding can also be found in
�

� 
��� All of these methods can be made to work well on a selected set of molecules�
but it is important to perform head�to�head tests between di�erent methods to assess
their relative strengths�
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We are primarily concerned here with the e�cient broad search of conformation
space to generate all of the low energy conformations within a prescribed energy of
a global minimum� In this sense� this work is similar in spirit to that of Saunders et
al� �	
�� In particular� we present a comparison of two search methods� the GA and
PDS methods� for this problem� Genetic algorithms draw on a set of evolutionary
metaphors including selection of �t individuals� mutation� and genetic crossover� PDS
methods belong to a class of optimization algorithms developed by Dennis and Torc�
zon ���� that can be viewed as multidirectional line search methods� These methods
are robust� simple to implement� and easily parallelized� We note that neither of these
methods has as its main goal that of �nding all minima within a certain distance of
the global minimum� but earlier work has indicated that both of these methods might
be applicable to this problem�

In addition� we present a technique for computing local energy minimization based
on a constrained optimization method� This method �originally described in �	��� is
based on transforming an unconstrained optimization problem in torsion space into
a constrained optimization problem using distance constraints that makes the energy
minimization more tractable�

The paper is organized as follows� Section � describes the energy functional
that we seek to minimize� Section 
 gives an outline of two conformational search
methods used in this paper� Section 	 gives a description of the new constrained
optimization method for performing energy minimization� In Section � we describe
the test problems and give numerical results� Section � follows with an analysis of the
results�

�� Potential Energy Equations� The conformational search problem can be
stated as a problem of �nding the molecular conformation that yields the lowest energy
for a particular N �atom molecule� that is�

min E�x� y� z�����

where E is the energy of the molecule given its coordinates x� y� z � Rn� Using this
formulation� the conformational search problem can be viewed as a global optimiza�
tion problem� Unfortunately� because the total energy of a molecule depends on all
atom�atom interactions� the number of possible low�energy con�gurations can grow
exponentially with the number of atoms and has been estimated by Hoare to be on
the order of O�eN

�

� for an N �atom molecule �����

The energy that we wish to minimize can take many forms� but it is usually
computed as a sum of terms that are functions of bond distances between two atoms�
bond angles between three atoms� dihedral or torsion angles between four atoms�
improper torsion angles� various non�bonded terms �Coulombic potentials� van der
Waals potentials� and perhaps including solvent e�ects�

In this paper we will use the potential energy equations used in CCEMD �Center
for Computational Engineering Molecular Dynamics� ����� These equations corre�
spond to the force �eld used in QUANTA�CHARMM�� ��� 	�� with modi�cations to
comply with the force �eld in CHARMM��� Here we only present a brief statement
of the major terms� The total energy is given by

E � Eb �E� �E� �E� �ELJ �Eel����
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The �rst four terms correspond to covalent bond interaction terms between atoms�
while the last two terms correspond to nonbonded forces between any two atoms� The
bonded energy term is de�ned by

Eb �

NbondX
i��

kib�r
i � ri��

���
�

where kib is the force constant for bond i� ri is the bond distance� and ri� is the equi�
librium bond distance� The bond angle energy term is given by

E� �

NangleX
i��

ki���
i � �i��

���	�

where ki� is the force constant for bond angle i� �i is the bond angle� and �i� is the
equilibrium bond angle� The dihedral angle energy term is

E� �

NdihedralX
i��

X
j

jkji j � kji cos�n
j
i�

i�����

where kji is a force constant� nji is an integer that can take on the values �� �� 
� 	� �
and �i is the dihedral angle� The improper torsion angle is de�ned as

E� �

NimproperX
i��

ki���
i � �i��

�����

where ki� is the force constant for improper torsion� �i is the torsion� and �i� is the
equilibrium torsion angle�

In addition to the bonded interactions� there are forces due to non�bonded inter�
actions� The van der Waals term is usually taken to be of the form of a Lennard�Jones
potential�

ELJ �
X
i��j

�
Aij

r��ij
�

Bij

r�ij

�
sw�rij ���
�

where Aij � �ij�
��
ij � Bij � ��ij�

�
ij � and �ij � �ij depend on the atoms i and j� The term

sw�rij� is a switching function that is used to cuto� the potential at long distances� A
variety of switching functions may be used depending on the application �for details
see ������

The �nal term due to the electrostatic potential is given by

Eel �
X qiqj

	���rij
sw�rij �����

where qi and qj are the charges on atoms i and j respectively and �� is a dielectric
constant�



	 MEZA�PLANTENGA�JUDSON

�� Search Methods� In this paper� we make the distinction between a search
method and a minimization method for the conformation problem� By a search
method we will mean any algorithm that is used to perform a coarse search of the
parameter space to look for starting guesses for a gradient�based local minimization
algorithm� In this sense� both genetic algorithms �GA� and parallel direct search
�PDS� methods are good candidates for search methods since they can be used to
quickly sample a large region of the parameter space� In addition� both of these
methods are easily parallelized� This section describes the major features of the GA
and PDS methods and how they are applied to the conformation problem�

���� Genetic Algorithms� We present here only a brief introduction to our
variant of the standard GA method ��
�� The most important idea is that we work
with a population of individuals that will interact through genetic operators to carry
out an optimization process� An individual is speci�ed by a chromosome that is a
bit string of length Nc that can be decoded to give a set of physical parameters�
In what follows� chromosome and bit string are synonymous� The function to be
optimized� also called the �tness function� is used to rank the individual chromosomes�
Optimization proceeds by generating populations whose individuals have increasingly
higher �tness� An initial population of Npop individuals is formed by choosing Npop

bit strings at random and evaluating each individual�s �tness�

Conformations are represented as bit strings that code for the free torsion angles in
the molecule� All bond distances and angles are held �xed� Each torsion is represented
by n bits giving a resolution of 
�����n � �� degrees� Typical values of n range from
� to ��� If b is the Gray coded binary value of the angle� the value in degrees is

��b���n � ��� The chromosome for the individual is constructed by concatenating
the bit strings for the individual torsions� The three principal operators are selection
of parents� crossover� and mutation�

In our selection operator� every individual in the top ranked 	�� of the population
has an equal chance of being selected for mating� All individuals in the bottom ranked
��� of the population are discarded� The �tness is the negative of the potential energy�
The crossover operator takes a pair of parents and chooses a random cut point along
the bit string� The chromosome of the �rst child is �lled in with the bits to the left of
the cut point from the �rst parent and the bits to the right of the cut point from the
second parent� The second child gets the complementary bits from the two parents�
Note that the crossover point is not restricted to lie on the boundaries separating
dihedrals� Doing so restricts the search too much and leads to poorer performance
by the GA� Notice however� that this introduces a subtle type of mutation because
the dihedral that is disrupted by the cut point does not assume the angular value
of either of the parents� By not restricting the cut point positions� we �nd that
premature convergence occurs less often and that lower energies are found�

Finally the mutation operator acts by �ipping bits in the binary chromosome�
Each bit has a probability equal to Rm of being �ipped from � to � or vice versa�
Mutation rates are typically quite low� on the order of ���	� An important detail is
that the entire population is not regenerated at each generation� The top ��� of
the old population is moved into the new population and all but the single best are
subjected to the mutation operator� meaning that they are mutated with the same
low probability as the rest of the members of the new population� We always use the
elitist strategy in which the most �t individual in each generation is passed directly to
the next without crossover or mutation� This ensures that the best individual is never
lost� but continues to be available for mating� Note that this individual is transferred
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directly from generation i to i � � but also produces o�spring that make up part of
generation i� ��

Additionally� during replication there is a small probability of a bit �ip or mu�
tation in a chromosome� This serves primarily to maintain diversity and prevent
premature convergence that occurs when a single very �t individual takes over the
entire population early in the evolutionary process� To bound the magnitude of the
e�ect of mutations� the binary chromosomes are Gray coded ��
�� An integer that
is represented as a Gray coded binary number has the property that most single bit
�ips change the value of the integer by ���

We have the ability to run multiple sub�populations simultaneously� At periodic
intervals� these populations can communicate by passing the best individual from each
population to each of the others�

During the crossover operations� a niching operation is used� As prospective new
members of the population are created� they are compared to those already accepted�
by measuring the Hamming distance� The Hamming distance is the fraction of bit
positions that have di�erent values in the two chromosomes� The prospective new
member is rejected if it is too similar to ones already present� Initially� an individual
must di�er by 	�� from every other individual �that is� no more than ��� of the bits
in the two can by set the same�� As the population �lls up� this criteria becomes too
restrictive and it is slowly relaxed until the population is �lled�

���� Direct Search Methods� Direct search methods belong to a class of opti�
mization methods that do not compute derivatives� Examples of direct search methods
are the Nelder�Mead Simplex method �
��� Hooke and Jeeves� pattern search ����� the
box method �	�� and Dennis and Torczon�s parallel direct search algorithm �PDS� �����

The PDS algorithm can be described as follows� Starting from an initial sim�
plex So� the function value at each of the vertices in So is computed and the vertex
corresponding to the lowest function value� vo� is determined� Using the underlying
grid structure� the simplex So is rotated ���� about vo and the function values at the
vertices of this rotation simplex� Sr� are compared against vo� If one of the vertices
in the simplex Sr has a function value less than the function value corresponding to
vo� then an expansion step to form a new simplex� Se� is attempted in which the size
of Sr is expanded by some multiple� usually �� The function values at the vertices of
Se are compared against the lowest function value found in Sr� If a lower function
value is encountered� then Se is accepted as the starting simplex for the next iteration�
otherwise Sr is accepted for the next iteration� If no function value lower than the one
corresponding to vo is found in Sr� then a contraction simplex is created by reducing
the size of So by some multiple� usually ��� and is accepted for the next iteration�

Because PDS only uses function comparisons� it is easy to implement and use�
Since the rotation� expansion� and contraction steps are all well�determined it is pos�
sible to determine ahead of time a set of grid points corresponding to the vertices
of the simplices constructed from various combinations of rotations� expansions� and
contractions� Given this set of grid points� called a search scheme� the PDS algorithm
can compute the function values at all of these vertices in parallel and take the vertex
corresponding to the lowest function value� An interesting consequence of this ap�
proach is that the PDS algorithm can jump out of local wells by using a large enough
search scheme size� By varying the size of the search scheme one can therefore use the
PDS algorithm as a means of e�ciently generating conformations in a manner similar
to GA and simulated annealing�

It is also worthwhile to contrast PDS with grid search methods� In a grid search
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method the grids are generated by starting with a �xed molecule and systematically
varying one of the internal variables� This method works well for small molecules but
becomes computationally prohibitive for larger molecules� The grid in PDS however
is adaptive and will automatically change in response to the contours of the energy
surface�

�� Energy Minimization Using Constraints� The search method chooses
candidate conformations for which the �tness must be evaluated� Fitness is usually
some measure of the smallest potential energy that can be achieved from the candidate
conformation� A simple measure is to compute the energy E for the conformation
using equations �������� Much better results can be obtained by performing a local
gradient minimization of the energy starting from the conformation chosen by the
search method� However� gradient minimizations can be computationally expensive�
especially for large molecules� We have chosen an alternative that makes a physically
intuitive compromise� In this approach� the covalent structure of the molecule is �xed
and local minimization is performed with only the dihedral angles as variables� This
is also known as minimizing in torsion space �
	�� The number of dihedral variables
is much smaller than the number of atoms� so the minimization problem is easier to
solve� In addition� �xing bond distances and bond angles eliminates many local energy
minima that are similar in depth� hence� torsion space minima produce a simpler but
still physically meaningful picture of the accessible conformations of a molecule�

It is possible to perform energy minimization in torsion space by expressing the
potential energy and its analytic derivatives in terms of the dihedral variables� This
approach was pioneered by Scheraga and coworkers in their ECEPP program �
	�
and has also been pursued by G�o et al� ��� 		� and Abagyan et al� �
�� ��� One
of the di�culties with performing calculations in torsion space is that a complicated
transformation of variables is required to go from Cartesian coordinates to a set of di�
hedral variables� The CHARMm potential energy model is most naturally expressed
as a function of the Cartesian coordinates of each atom� Transforming this model to
use dihedral variables and then computing analytic derivatives is quite complicated�
usually requiring topological analysis of the molecule� de�nition of multiple local co�
ordinate frames� and the use of matrix operators to link the local coordinate systems
�see ���� �� 
�� for examples�� In addition� the number of operations necessary to make
a transformation is proportional to the square of the number of dihedral variables�
thus� computational costs increase rapidly as larger molecules are examined�

Instead of transforming the potential energy to torsion space� we �nd a set of
distance constraints between pairs of atoms that serves to restrict all molecular mo�
tion except rotation of speci�ed dihedral angles� The distance constraints are simple
quadratic functions in Cartesian coordinates� Thus� we minimize the usual potential
energy function subject to a set of quadratic equality constraints� all in Cartesian co�
ordinates� Our constrained problem is equivalent to minimizing in torsion space in the
sense that we �nd the same set of local minima� However� the intermediate molecular
conformations generated during our minimization are di�erent� Our approach avoids
the mathematical complexities associated with transforming to dihedral variables�
We have a simple method of �nding an appropriate set of distance constraints that is
easily automated� Also� we are able to maintain variable sparsity in our constrained
formulation� keeping the linear algebra costs manageable even for large molecules�

The chief advantage of our approach is that it makes numerical energy minimiza�
tion in torsion space much simpler� Our method poses a minimization problem with
nonlinear equality constraints in Cartesian coordinates instead of an unconstrained
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problem in internal coordinates� We have employed a code ���� based on sequential
quadratic programming �SQP� methods that seems well suited to the constrained
molecular mechanics problem� An SQP method treats the constraints explicitly and
does not require the elimination of the dependent variables from the nonlinear con�
straints� The algorithm utilizes sparse linear algebra techniques to solve all subprob�
lems and operates as a quasi�Newton or truncated Newton method with only �rst
derivative information�

���� Dihedral variables and constraints� We follow Scheraga �
	� and �x
the covalent structure of the molecule except for the rotation of dihedral angles� This
simpli�ed model determines an approximate molecular conformation by changing di�
hedrals in response to non�bonded and dihedral angle forces� Dihedral angles are now
the primary variables of the problem � atom positions are computed from knowledge
of the dihedrals and the �xed bond distances and angles� An unconstrained mini�
mization can be carried out in torsion space if we can calculate the gradient of the
potential energy with respect to dihedral variables� that is� if we can transform the
Cartesian force vector into dihedral coordinates� The transformation can be done
analytically as in ��� 
��� but the equations are extremely complicated to derive and
to program� We wish to show how the transformation of coordinates can be avoided
using distance constraints between pairs of atoms�

Let us consider the simple example of ethane in Figure �� It has a single dihedral
angle� whose rotation is illustrated by the arrow� Usually� two planes are speci�ed�
such as H��C��C� and C��C��H�� and the dihedral is de�ned as the angle between
the two planes about the axis C��C�� Now if all bond distances and angles in the
ethane molecule are �xed� then the methane group on the left containing C� and H�
is a rigid body that rotates about the C��C� axis� The methane group on the right
is a similar rigid body� Thus� rotation about a dihedral can be characterized as the
relative rotation of two rigid bodies about a common axis�

H1 H2

C1
C2

Fig� �� Dihedral rotational in ethane

Figure � shows the ethane molecule with distance constraints �drawn as dashed
and dotted lines� for the two methane groups� The distance constraints can be thought
of as rigid bars or virtual bonds between atoms that restrict motion� The dashed
constraints de�ne a rigid �ve�point polyhedron on the left and the dotted constraints
do the same on the right� The �gure shows that these two rigid pieces are connected
together in such a way that they can spin about the C��C� axis� but cannot otherwise
move in relation to each other� Note in particular that the distance constraints for
each rigid piece include the dihedral axis and reach across it�

In Figure � there are � dashed� � dotted� and one dash�dot line between C� and
C�� for a total of �
 constraints� In general a set of n points describing a rigid body
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C1

C2

Fig� �� Distance constraints allowing only dihedral rotation in ethane� There are �� constraints
restricting molecular motion�

in three dimensions has six degrees of freedom �three for translation and three for
rotation with respect to an external coordinate system�� therefore� 
n� � constraints
are needed to make the body rigid� Each rigid polyhedron in Figure � contains � atoms
and �
 � �� � � � � distance constraints �the C��C� constraint is shared by both��
The ethane molecule as a whole can freely translate and rotate� and its dihedral angle
gives it one internal degree of freedom� therefore� it should have �
� ��� �� � � �

constraints� This is exactly what Figure � shows�

Our method generalizes easily to molecules with more than one dihedral� Suppose
there are two dihedrals dividing a molecule into three pieces� The idea is to make each
piece into a rigid polyhedron� then connect them together in pairs to allow rotation
about the two dihedral axes� The end polyhedrons are treated just like the rigid
methane groups in ethane� The middle polyhedron connects to two dihedral axes�
but these dihedrals are necessarily distinct and do not interact with one another�
Clearly we can extend this idea to any number of dihedrals� as long as they are truly
free to rotate in the molecule �a single dihedral in a closed chain does not have full
freedom� for instance��

Our procedure allows us to choose distance constraints for each rigid piece in�
dependently of the other pieces� that is� it is a strictly local procedure� Internal
coordinate methods also divide the molecule into rigid pieces� but require a topology
tree of interdependencies between the pieces ��� 
��� The tree describes which pieces
move when a particular dihedral rotates� and then a calculation is made involving all
a�ected pieces to determine the constrained motion resulting from a dihedral rotation�
The global interdependence of pieces results because internal coordinate methods are
eliminating variables� We add constraints to the problem instead of eliminating vari�
ables� side�stepping the problem of calculating coupled rigid body motions�

������ Choosing the best constraints for a rigid piece� We speci�ed �
distance constraints to make each of the �ve�atom polyhedrons in Figure � rigid�
There are �� possible atom�to�atom distance pairs� only 	 of which correspond to the
length of a real chemical bond� This is not an unusual situation� In general� a set of
n points has �n� � n��� possible distance pairs� of which we need 
n� �� A molecule
with no rings has only n�� chemical bonds� so we face a growing surplus of constraint
options as n increases�

For a rigid piece with n 	 	 atoms we could add on distance constraints atom�by�
atom as in ����� This is a logical procedure� but it turns out that from an optimization
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perspective there is a �best� set of 
n� � distance constraints� Each constraint is a
quadratic equation in six unknown atom positions� For example� if Rij is the �xed
distance between atoms i and j� then the corresponding constraint equation is

�xi � xj�
� � �yi � yj�

� � �zi � zj�
� � R�

ij �

To solve the constrained optimization problem we will employ the transpose of the con�
straint Jacobian matrix de�ned by the gradients of the constraint equations� It is im�
portant to an optimization algorithm that this matrix be numerically well�conditioned�
that is� that its columns be as linearly independent as possible� We de�ne the �best�
set of distance constraints as the set for which the matrix of gradients has the smallest
condition number�

The best set of constraints is found automatically using a rank�revealing QR fac�
torization ����� We �rst assemble a matrix containing the gradient vectors for every
possible distance constraint� arranged in any order� The rank�revealing factorization
is a Gram�Schmidt orthogonalization procedure that chooses the next column �that
is� constraint gradient� to be eliminated by examining the size of all remaining pivot
elements� It passes through the entire matrix and returns an optimal ordering of con�
straints with their pivot sizes� The �rst 
n�� constraints chosen by the factorization
give a matrix with the desired small condition number� We use the LINPACK ��
�
subroutine dqrdc to perform the factorization�

A moment�s consideration of Figure � reveals that we do not have total freedom
in choosing our constraint set� We must make sure that we include the distance
constraints that �x the lengths of any dihedral axes connected to our rigid piece �for
ethane� this is the rigid bar C��C��� Otherwise� two connecting rigid polyhedrons
would have the freedom to shift along their common dihedral axis as well as rotate
around it� Fortunately� dqrdc has the capability of forcing speci�ed constraints to be
in the front of the QR factorization matrix�

One other important detail needs discussion� What if the atoms forming a rigid
section of the molecule are coplanar In this case the rank�revealing QR factorization
�nds only 
n � 
 nonzero pivots� The corresponding distance constraints force the
atoms to be rigidly connected within a plane� but they do not force the atoms to
remain coplanar �see �
� p� ���� for instance�� As discussed in �	��� subroutine dqrdc

can easily detect nearly coplanar sets of atoms� and CCEMD ���� allows us to introduce
�ctitious noncoplanar atoms that keep the constraint Jacobian well�conditioned�

Let us summarize our method for choosing the distance constraints� A molecule
is provided with bond lengths and bond angles already �xed at desired values� and a
set of d dihedrals is speci�ed�

Procedure for de�ning the distance constraints�
�� Using the d dihedral angles� partition the molecule into d�� nonoverlapping

pieces� assigning each atom to exactly one piece� �We assume for simplicity
that closed rings do not have free dihedrals��

�� For the ith piece� i running from � to d� ��
a� De�ne a set Si consisting of all the atoms in the piece� plus the atom

on the opposite of every dihedral axis connected to this piece� Let ni denote
the number of atoms in Si�

b� Consider all pairwise distances between points in the set Si� and con�
struct a matrix whose columns are the gradients of these quadratic distance
constraint equalities� The matrix has 
ni rows and �n�i � ni��� columns�
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c� Perform a rank�revealing QR factorization on the matrix to �nd the
best 
ni � � distance constraints� Force the factorization to include the dis�
tance constraints between atoms that de�ne the dihedral axes touching this
piece� �If the magnitude of pivot number 
ni � � is less than ���� times the
magnitude of the �rst pivot� then add a �ctitious noncoplanar atom to Si and
go back to step �b��

�� Combine all the distance constraints generated for each piece� Notice that
the constraint between the two atoms de�ning a dihedral axis shows up twice
because it was speci�cally included in each of the two pieces it joins� Keep
just one of these two copies�

A straightforward calculation shows that this procedure generates the correct
number of constraints� Let n be the total number of atoms in the molecule� The
whole molecule has � external and d internal degrees of freedom� so this procedure
should �nd a total of 
n���d distance constraints� Let di be the number of dihedral
angles touching the ith piece� Since each dihedral touches exactly two di�erent pieces�
we see that

d��X
i��

di � �d�

In step �a we included in Si the atom on the opposite side of the axis for each dihedral
touching a piece� Taking it back out gives a strict partitioning of the molecule� so

d��X
i��

�ni � di� � n�

Now the total number of constraints collected in step � is just the sum of the number
found for each piece minus the extraneous copy of each dihedral axis constraint� If
we simplify this number using the previous equations� we obtain the correct number
of constraints�

d��X
i��

�
ni � ��� d �

d��X
i��

�
ni � 
di� �

d��X
i��

�
di � ��� d

� 
n� 
��d�� ��d� ��� d

� 
n� �� d�

This procedure also works when free dihedrals are present in closed loops of atoms�
provided we check that no duplicate distance constraints are generated between the
rigid pieces comprising a loop� Duplicate constraints could conceivably arise between
pairs of atoms on di�erent dihedral axes within a loop� This is unlikely if the loop
contains many dihedrals� as� for example� in our work with proteins where loops result
from cysteine disul�de bridges�

���� An optimization algorithm for large�scale constrained optimiza�

tion problems� In the previous section we showed how to de�ne distance constraints
so that only speci�c dihedral variables can change� This section describes the opti�
mization algorithm used to solve the constrained energy minimization problem� The
theory underlying this algorithm stems from the work of Byrd ��� and Omojokun �
��
in the area of trust regions for equality constrained optimization� A general purpose
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software implementation of the algorithm called ETR was created with large�scale
applications in mind ���� 
���

We are faced with solving the constrained algebraic optimization problem

min E�x�� y�� z�� � � � � xn� yn� zn����

subject to �xi � xj�
� � �yi � yj�

� � �zi � zj�
� � R�

ij � for i� j � D�����

where the position of atom i in a Cartesian coordinate system is denoted by the triple
�xi� yi� zi�� the �xed Euclidean distance between atoms i and j is the constant Rij �
and D is an index set containing the full list of distance constraints� The variables in
this problem are the 
n coordinates of the atoms� The number of equality constraints
is 
n � � � d� which can be a large number if we specify only a few dihedrals to be
free� The potential energy E is calculated in Cartesian coordinates by some molecular
dynamics code in accordance with a given force �eld model� We assume that E is a
continuously di�erentiable function of the variables and that its gradient �the negative
of the force on every atom� can be calculated�

������ ETR algorithm for equality constrained optimization� The ETR
algorithm is based on sequential quadratic programming �SQP�� a standard approach
for solving optimization problems with nonlinear equality constraints ��	� ���� To use
more general notation� let x � Rn be the vector of variables� f�x� � Rn � R the
function to be minimized� and c�x� � Rn � Rm the set of m equality constraints�
The general constrained minimization problem is then written as

min
x

f�x� subject to c�x� � ������

Basically� an SQP method adds a Lagrange multiplier variable 
i for each of the
m constraints and applies Newton�s method to the resulting system of equations� The
Newton method generates a sequence of iterates fx�� x�� � � � � xk� � � �g that converge to
a solution of problem ����� For a given iterate xk� a quadratic Taylor series expansion
of ���� determines the SQP subproblem

min
p

f�xk� � pTrf�xk� � �
�
pTW �xk � 
k� p����

subject to ci�x
k� � pTrci�x

k� � �� for i � �� � � � �m���
�

We minimize this simpler subproblem to �nd the next iterate xk��� Note that f�xk��
c�xk�� rf�xk�� rci�x

k�� and W �xk� 
k� are constant quantities in the optimization
subproblem� The variable p � Rn is a distance vector from the point xk� so that
���� represents a quadratic function in the components of p and ��
� de�nes linear
approximations to the constraints that p must satisfy� The matrix W is the Hessian
of the Lagrangian

W �xk � 
k� � r�f�xk� �

mX
i��


kir
�ci�x

k��

which contains all second�order derivative information� The solution to �������
� is a
vector pk� known as the step at the current iterate xk� In a pure Newton method the
next iterate is calculated directly as xk�� � pk � xk�

For unconstrained optimization it is well�known that Newton�s method only works
if the starting iterate x� is already close to a solution� The same is true for constrained
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optimization� To make the SQP method work for an arbitrary starting guess we em�
ploy a trust region globalization technique� �Another common globalization technique
uses line searches�� This is just a mechanism for judging the accuracy of subproblem
�������
� as a suitable model for the real problem ����� which is not quadratic� The
trust region is a hypersphere about the point xk with radius !� It is used to limit
the length of the step p by appending to subproblem �������
� the inequality

kpk� � !��	�

�k � k� stands for the Euclidean norm of a vector�� The idea is to make ! smaller
when the accuracy of the model seems poor� Since a signi�cant amount of work goes
into constructing and solving the SQP subproblem� however� a smart trust region
algorithm acts to increase ! when the accuracy seems good� thereby allowing bigger
steps towards a solution�

There are a variety of ways to enforce the trust region inequality ��	� while solving
�������
�� We use the method of Byrd ��� and Omojokun �
�� because it allows e�cient
solution of large�scale problems� Our software implementation of this method is called
ETR �for Equality constrained optimization using Trust Regions� and is explained in
detail in ���� 
���

The ETR code computes a step pk as the sum of two orthogonal vectors� One of
these� the vertical step� attempts to satisfy the linearized constraint equations ��
��
If we collect the gradient vectors of each constraint into the n�m matrix

A�xk� � �rc��x
k� rc��x

k� � � � rcm�xk�������

then all m equations in ��
� can be written collectively as �A�xk��T pk � c�xk� � �� It
turns out that the vertical step v � RN computed by ETR always lies in the range
space of A�xk�� that is� v is a linear combination of the columns of A�xk��

The other part of pk is called the horizontal step� It seeks to minimize the function
���� without disturbing the improvements made by v� To accomplish this it must be
orthogonal to every constraint gradient� so we use sparse linear algebra techniques to
construct an n� �n�m� matrix Zk that satis�es the equation �A�xk��TZk � �� Then
the horizontal step is expressed as a vector Zku� where u � Rn�m are variables that
are chosen to minimize ���� as much as possible� The �n� m��dimensional subspace
spanned by the columns of Zk is the reduced subspace of problem �������
�� that is�
the subspace left after imposing the m linearized constraints of ��
�� The vector u
has one component corresponding to each degree of freedom in problem �������
��

ETR forms the step as pk � v � Zku� To judge the accuracy of this step we
use the merit function f�xk � pk� � �kc�xk � pk�k�� where � 	 � is a parameter
that controls the relative importance of minimizing f and of satisfying the equality
constraints� The method for choosing � and other important details are documented
in �����

������ Applying the ETR algorithm� For a molecule with n atoms and d
free dihedrals� the size of the optimization problem is n � 
n and m � 
n � � � d�
It takes one computation of the potential energy and interatomic forces in Cartesian
coordinates to get f�xk� andrf�xk�� The values of the constraints and their gradients
must also be computed to get c�xk� and rci�x

k�� however� these are much cheaper
�the computation is roughly equivalent to evaluating the energy and forces due to just
the bond lengths�� The second derivative information in W is usually approximated
by a quasi�Newton matrix� A classical BFGS approximation is appropriate� but for
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large problems the storage requirements of the full matrix or its representation can
become prohibitive� For this reason we use a compact limited memory BFGS ���� ��
approximation for W � which stores only �� vectors of length 
n� Thus� the cost of
setting up subproblem �������
� is determined primarily by the cost of one evaluation
of the potential energy and forces�

The vertical step v depends on c�xk� and the constraint gradients collected in
A�xk�� both of which were computed in setting up the SQP subproblem� ETR cal�
culates v by treating the linearized constraint equations ��
� as a linear least squares
problem with a trust region� that is� by solving

min
v

kc�xk� � �A�xk��T vk� subject to kvk� � ���!�

Computing v involves some linear algebra operations with the matrix A�xk�� but
these are fairly cheap because we chose the distance constraints to make A�xk� well�
conditioned� and because this is an extremely sparse matrix� As explained in �	���
the sparsity of this matrix is a distinct advantage over methods which transform all
Cartesian variables to dihedral variables�

Computation of the horizontal step is similar to a standard unconstrained quasi�
Newton minimization of the potential energy� The main di�erences are the presence of
Lagrange multipliers in the quasi�Newton Hessian approximation� and the restriction
that the horizontal step be in the form Zku� But the multipliers and Zk both derive
from Ak� which is well�conditioned and computationally cheap to work with� Also� the
complexity of dealing with Zk is somewhat o�set by the smaller size of the reduced
space minimization subproblem �its dimension is n�m � � � d��

In summary� we expect the cost of solving each SQP subproblem to be domi�
nated by the cost of evaluating the potential energy and interatomic forces at the
current iterate� There is one force evaluation per subproblem� the same as in most
unconstrained minimization algorithms� The extra overhead of solving for nonlinear
constraints is not large and should scale linearly with the size of the molecule� If we
assume that the potential energy and interatomic forces can be calculated separately�
then we obtain the simple outline of the ETR algorithm shown below�

General description of the ETR algorithm for solving ���������

� Choose a molecular conformation and load initial atom positions into x�

� Make one energy evaluation to get f�x�� and c�x��
� Initialize ! 	 �� W � � I � and k � �
� Begin the main loop

Make one force evaluation to get rf�xk�� and compute A�xk� using ����
Compute Zk from A�xk�
Use A�xk� and rf�xk� to compute Lagrange multiplier estimates 
k

�a if krf�xk��A�xk�
kk� � 
 and kc�xk�k� � 
 then return success
�b Use A�xk� and c�xk� to compute a vertical step such that kvk� � ���!

Use rf�xk�� W k� and Zk to compute a horizontal step with kZkuk�� � !� � kvk��
Set pk � v � Zku
Make one energy evaluation at the new trial point to get f�xk � pk� and c�xk � pk�
if the trial point is not a su�ciently good improvement over xk

then !� ��kp
kk�� goto �b

else xk�� � xk � pk� !� ��! � update the ��BFGS matrix W k

Increment k and goto �
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The main loop of the ETR algorithm sets up a series of SQP subproblems� The
inner loop beginning at �b �nds a suitable step pk that solves the subproblem� ETR
decides at �a that it has converged if �rst�order optimality conditions are satis�ed
to a tolerance 
� This means that every distance constraint is within 
 of its proper
length� and that every component of the reduced gradient is smaller than 
� The trust
region size ! is updated after every trial point using the parameters �� and ��� For
best algorithm performance we used ��� � �� � ��� and � � �� � �� with the exact
value determined by how much improvement was made in the merit function by the
trial point �see ���� for details��

�� Computational test results� In this section we present computational re�
sults which show the relative e�ectiveness of two global search strategies� The GA
and PDS algorithms were used to generate a large number of candidate starting con�
formations� The �tness of each candidate was evaluated by calculating a local energy
minimum in torsion space using our constrained optimization method� From this data
we plotted the low energy spectrum revealed by each global search scheme� We expect
to observe that both the GA and PDS algorithms preferentially �nd low energy min�
ima� Our experiments provide some quanti�cation of the e�ectiveness of the search
strategies� In addition� we will see whether the methods reveal the structure of the
spectrum at higher energies�

���� Test Problems� We chose two small synthetic peptides for this investiga�
tion� whose characteristics are summarized in Table �� The peptides were prepared by
using QUANTA �	�� and were built with no hydrogens to reduce the CPU time for the
energy calculations� The energy of each molecule was �rst gradient�minimized with�
out constraints to form the reference conformation� Although the test molecules are
fairly small� they possess a large number of distinct local energy minima� Assuming a
simple three�fold symmetry about each dihedral� we expect on the order of 
� � ���
distinct minima in torsion space for Thr�Ala� and 
� � ���� for Thr�Ala�Leu� Our
objective is to identify all the minima within �� kcal�mol of the global minimum�

Table �
Test molecule characteristics

sequence number of atoms number of dihedrals
Thr�Ala �
 	
Thr�Ala�Leu �� �

Each global search strategy varied the dihedral angles to generate a particular
starting conformation of the molecule� Bond distances and bond angles were held
�xed during this procedure� Our constrained optimization method was applied to
each starting conformation and run until a local energy minimum in torsion space
was found� The constraint equations were enforced so that rigid interatomic distances
did not change by more than ���� "A� We carried out the local minimization to an
unusually tight tolerance� requiring the Euclidean norm of the force vector expressed
in dihedral variables to be less than ���� kcal�mol�"A� The tolerance is more accurate
than the chemical model warrants� but our goal was to reliably distinguish between
neighboring energy minima and provide a complete map of all low energy minima�
similar to �	
�� The size and average execution time of the constrained minimization
problems are reported in Table �� All calculations were performed on an SGI Power
Challenge with a 
� MHz MIPS R���� processor�
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Table �
Constrained optimization problem sizes

problem number of unknowns number of constraints average CPU time

Thr�Ala 
� �� ���� seconds
Thr�Ala�Leu �
 	� 	��� seconds

���� Energy Minimization Results� We accumulated data for three variants
of the GA and PDS search strategies� which are listed in Table 
� The three runs
di�ered primarily in the number of candidate conformations that were generated�
����� for the �rst run� ����� for the second� and 	����� for the third run� In addition�
we generated start points from a completely random distribution of dihedral angles�
We do not suggest that this is a viable search strategy� it was used merely to help �ll
in the energy spectrum of the test molecules�

The three GA runs di�ered in the size of the population making up each generation
and in the number of generations� as shown in Table 
� The third run also included
niching operations between four sub�populations� The #chromosomes� of the GA runs
were ���bit representations of the dihedral angle variables� We used a mutation rate
of �����

The three PDS runs were identical except for the total number of candidate points
generated and the search scheme size� The search scheme size was set to �	 vertices for
the Thr�Ala problem and to ��� vertices for the Thr�Ala�Leu problem� In addition�
we modi�ed the standard PDS algorithm so that it didn�t generate any contraction
points in the scheme� The e�ect of this modi�cation is to allow the method to generate
a coarser but broader scheme� Since we are using PDS solely as a search method and
we are not concerned with �nding a local minimum this allows us to explore more
points overall�

Table �
Description of global search strategies� Each line shows a search strategy for choosing dihedral angles
to generate di�erent molecular conformations�

� Each dihedral treated as a uniformly random variable
� GA with �� generations� �� individuals per generation
� GA with �� generations� ��� individuals per generation

 GA with ��� generations� ��� individuals per generation� and 	 niches
	 PDS for a total of ����� conformations
� PDS for a total of ����� conformations
� PDS for a total of 	����� conformations

The set of local energy minima found from each global search scheme was col�
lected and analyzed for unique conformations� This was done by clustering together
�nal conformations whose energies di�ered by less than ������� kcal�mol and whose
dihedral angles di�ered by less than ��� degree rms� This �rst clustering criteria
was applied to �lter out �distinct� local minima which we feel were distinct only be�
cause the gradient minimization was not carried to a higher precision� Then a second
clustering operation was applied to reduce the minima to a more chemically mean�
ingful set� The members of each of these clusters had energies within ��� kcal�mol
and dihedrals within ��� degree rms� To form these clusters� we examined the list of
minima from lowest energy to highest and placed each conformation in an existing



�� MEZA�PLANTENGA�JUDSON

cluster if its energy and dihedrals di�ered by less than the tolerances from every other
conformation already in the cluster�

We report the total number of each cluster type found by the di�erent search
strategies in Tables 	 and �� Each line shows results for one of the global search
strategies described in Table 
� The �rst two columns show the total number of
starting points considered by each strategy �� start pts� and the lowest energy found�
The next two pairs of columns each give the number of mathematically distinct local
minima �� math min� and chemically relevant distinct minima �� chem min�� The
former are separated by at least ������� kcal�mol or ��� degree rms and the latter by
��� kcal�mol or ��� degree rms� These tables also list the number of local minima found
within �� kcal�mol of the �global� minimum under the Low energy minima heading�
We take as our estimate of the global minimum potential energy the smallest energy
found by any method during our calculations�

Table �
Search results for Thr�Ala� Low energy minima have energies � ���	�	� kcal�mol�

All minima Low energy minima
strategy � start pts lowest energy � math min � chem min � math min � chem min

� 	����� ��	�	� kcal�mol ��� �� 
� 
�
� ����� ��	�	� kcal�mol �� �� 
� �


 
���� ��	�	� kcal�mol �� �� �� ��
� ������ ��	�	� kcal�mol 	
 �
 �� 
�
� ����� ��	�	� kcal�mol �� �� 
� ��

 
���� ��	�	� kcal�mol 	� �� �	 ��
� ������ ��	�	� kcal�mol ��� �� 
� 
�

Table �
Search results for Thr�Ala�Leu� Low energy minima have energies � ��
�
��� kcal�mol�

All minima Low energy minima
strategy � start pts lowest energy � math min � chem min � math min � chem min

� 	����� �
��	��� kcal�mol �
�� �

� �
�� �	

� ����� �
���
�� kcal�mol ��� ��� ��� ���

 
���� �

�
��� kcal�mol ��	� �	� 

� �
	
� ������ �

�
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�
 
��
 �

� �
�
� ����� �
���
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�� 
�� 	� ��

 
���� �
��		
� kcal�mol ��	
 ���� ��� 
��
� ������ �

�
��� kcal�mol 
��� 
	�� ���� 
��

Table 	 shows that the global minimum for the small Thr�Ala molecule was rela�
tively easy to locate� However� the full set of chemically meaningful low energy states
was harder to locate� From strategies � and � we see that searching over ����� can�
didate conformations turned up �� � of the low energy minima� Strategies 
 and �
show that up to 	����� start points were needed to �nd all the low energy states�

The number of unknowns doubled in the molecule Thr�Ala�Leu and from Table �
we see that both strategies were successful in �nding the global minimum� The GA
and PDS algorithms located approximately the same number of low energy minima�
but PDS found signi�cantly more high energy states for the same amount of work
�compare strategy � with �� and strategy 
 with ���

We plotted the local energy minima found by each global search strategy in Fig�
ures 
 and 	� Each column in these �gures shows the energy spectrum found by a
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particular search strategy� Each dash represents one local energy minimum after the
second clustering operation was applied� that is� the �gures correspond to data in the
columns of Tables 	 and � headed by � chem min� In Figure 	� we have plotted all
the energy minima� while Figure � shows only the minima within �� kcal�mol of the
apparent global minimum�

From Figure 
 we see that both the GA and PDS methods succeeded in mapping
the full energy spectrum of the molecule� PDS found a slightly greater density of
states among the higher energies for the same amount of work �compare columns �
and � in the �gure�� The general structure of the spectrum was evident after only
���� candidate conformations �columns � or 	��

Figure 	 plots only the low energy states of the spectrum of Thr�Ala�Leu� It is ap�
parent that a large number of conformations must be examined to �ll in the spectrum�
especially at the lowest energies� With ���� or fewer starting points �strategies � and
��� GA does a noticeably better job at �nding the lower energy conformations than
PDS� As the number of starting points increases however� this di�erence disappears�

�� Summary� We have presented a comparison of two search methods� GA and
PDS� for �nding all of the local minima within a prescribed distance of the global
minimum energy of a molecule� The GA method is an optimization algorithm designed
to �nd the global minimum of a function� The PDS method is a local optimization
method that we have employed as a search method� Although neither of the two
methods was designed for the purpose of �nding more than one minimum� we have
shown that in combination with a local gradient�based minimization method they
can �nd a large number of local minima� Both methods tend to concentrate the
computed minima towards the lower energies in the energy spectrum as the sample
size of starting points is increased� In this sense� it can be argued that both methods
would be appropriate for performing conformational searches�

We have also described some recent work �	�� that uses distance constraints be�
tween atoms to allow potential energy minimization of molecules while holding all
bond lengths and bond angles �xed� The constrained energy minima found by this
method are identical to those found by minimizing in torsion space� Our method
operates directly in Cartesian coordinates and avoids the usual di�culties associated
with transforming to internal coordinates� We have presented a simple procedure for
choosing appropriate distance constraints based on linear algebra considerations� It
is simple because our constraints are determined solely by the atoms in a single rigid
piece of the molecule � no analysis of coupled rigid body motions is needed� Our
method requires the solution of a constrained optimization problem in 
n Cartesian
unknowns instead of an unconstrained problem in d dihedral variables� By employ�
ing an optimization algorithm that exploits the sparsity structure of the constraints
the new method has an added advantage over the apparently smaller minimization
problem in internal coordinates�
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Fig� �� Energy spectrum for minimizing Thr�Ala in torsion space� Each mark shows the energy of
a unique local minimum� The column numbers correspond to global search strategies�
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Fig� �� Low energy spectrum for minimizing Thr�Ala�Leu in torsion space� Each mark shows the
energy of a unique local minimum� The column numbers correspond to global search strategies�


